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A B S T R A C T
Cluster users expect to minimize the resource costs while ensuring target performance for different
applications. It is particularly difficult to reach such a goal, because the applications are diverse
with dynamic load changes, and interference exists between them. In addition, the performance of
the applications depends on heterogeneous resources with different costs. However, existing works
either use simplistic and generalized heuristics that disregard resource-specific characteristics or need
suspending service to get expert knowledge to optimize the resource cost for a brand-new application
or runtime, which fails to optimize the resource allocation finely.

In this paper, we propose Sonnet, a control-theoretic approach to perform efficient resource
allocation. Sonnet can efficiently optimize the cost of resources while satisfying the SLO by quickly
establishing new application performance models through only online profiling and without affecting
service. Experiments on Docker Swarm using various open-source benchmarks demonstrate that
Sonnet can decrease the SLO violation rate by 91% while reducing resource costs up to 47% compared
with the state-of-the-arts.

1. Introduction
Cluster users need to declare how many resources are

needed for their applications in the cluster. In the Kubernetes
cluster, users set the resource limits for each pod; in public
clouds, users need to choose the type of virtual machines
(VMs) they will rent. Edge computing can reduce data
transmission latency and prevent user data from leaking
into the cloud. However, users need to allocate resources
more sophisticatedly due to the limited resources on the
edge. Besides, latency-sensitive applications executed in
clusters need to reach latency service level objectives (SLO).
However, it is difficult to allocate appropriate resources to
applications. Firstly, the workloads in clusters with inherent
dynamic behavior and the interference between co-located
workloads can frequently lead to SLO violations. Secondly,
tasks in the cluster have different characteristics, and the
generalized approach will lead to suboptimal resource allo-
cation. Thirdly, computing resources at the edge are limited,
requiring more sophisticated solutions to reduce resource
waste. This makes resource allocation extremely difficult,
and inefficient resource allocation strategies will lead to
resource over-provision or a large number of SLO violations.

Some previous works have been proposed to reduce
SLO violations while improving resource utilization. Firstly,
some works [1, 2, 3, 4, 5] use simplistic heuristics that
disregard specific characteristics. Tasks in the cluster have
different characteristics, and the generalized approach will
lead to suboptimal resource allocation. Secondly, other stud-
ies [6, 7, 8] need to suspend the service to get expert
knowledge to optimize the resource allocation. However, the

∗Corresponding author. School of Automation, Beijing Institute of
Technology, Beijing, 100081, China.

mrf@bit.edu.cn (R. Ma); yu-feng.zhan@bit.edu.cn (Y. Zhan);
xia_yuanqing@bit.edu.cn (Y. Xia); wucg@bit.edu.cn (C. Wu);
ytyangliwen@163.com (L. Yang); runze_gao@bit.edu.cn (R. Gao)

offline profiling will extend the response time. Therefore,
we need a repaid method that can dynamically adapt to load
changes and achieve fast allocation among various resources
with cost-effectiveness.

In this paper, we propose Sonnet, a control-theoretic ap-
proach for automated resource allocation that reduce users’
costs without degrading the generality and performance of
applications. It can allocate resources in a cost-effectively
way for a brand new application without offline profiling or
prior knowledge. Firstly, Sonnet defines an SLO for each
application. With SLO, users only need to specify latency,
execution time, and other related metrics that can be mea-
sured during application execution. This decouples the users
from the underlying resource allocation loop, which is quite
complex and beyond the users’ capabilities.

Then, Sonnet estimates the amount of resources to
achieve target SLO with cost-effectiveness using a modified
model-free adaptive control (MFAC) [9] algorithm with-
out taking into consideration the structure of the system
itself. MFAC is suitable for multiple-input and multiple-
output (MIMO) systems, which adjusts the amount of multi-
ple resources based on the difference between the observed
performance and the target performance. Essentially, Son-
net efficiently and swiftly constructs an online mapping
model between the target SLO and the necessary multiple
resources, all while ensuring uninterrupted regular service.
The online model enables Sonnet to adapt to dynamic
load changes. Compared to existing methods, on the one
hand, MFAC can be applied for MIMO systems and is
suitable for multiple resource allocation, while Skynet [3]
uses proportional integral derivative (PID) for single-input
and single-output (SISO) systems and cannot capture which
resource the current application is more sensitive to. There-
fore, MFAC can allocate resources with cost-effectiveness.
On the other hand, MFAC is an online adaptive approach
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and does not require offline profiling, while reinforcement
learning (RL) based methods [7] [8] usually need long-time
offline data collecting and training. Additionally, in SLO
measurement, noise is inevitable. We use a low-pass filter to
filter the collected data. It can filter out the high-frequency
noise of the measurement and avoid oscillation.

Finally, we implement our approach on Docker Swarm
on HUAWEI cloud. We use Linux traffic control to avoid
interference caused by network sharing between contain-
ers. Experiments have been conducted with several work-
load combinations to evaluate the effectiveness of our pro-
posed approach. Our approach can adaptively handle dif-
ferent workloads online. Experimental results show that,
compared with the state-of-the-arts, Sonnet can decrease
SLO violation rate by 91% while reducing resource costs up
to 47%. The main contributions of this paper are summarized
as follows:

• We design an end-to-end online resource allocation
system named Sonnet, which does not require offline
profiling or prior expert knowledge.

• We use an MFAC algorithm to build a dynamic map-
ping model between the target SLO and resources, and
optimize the resource costs.

• We implement Sonnet on Docker Swarm, as a custom
SLO-based cluster management tool.

The rest of this paper is organized as follows. Section 3
gives the motivation of this paper. In Section 4, we present
the design and implementation details of Sonnet. The per-
formance of the proposed approach on various open-source
benchmarks is evaluated by comparing it with the state-of-
the-arts in Section 5. Section 2 discusses the related works
and Section 6 concludes the paper.

2. Related Work
In this section, we discuss related works of resource

allocation. We categorize the related work into two main
classes: analyze and modeling method and learning based
method.
2.1. Analyze and Modeling Method

For online resource estimation, we usually observe some
metrics of the container and perform vertical scaling of
the container according to these metrics. Skynet [3] applies
PID controllers to estimate the resource demands. The ap-
plication performance metric, such as latency, is observed
and set as a control variable. PID controller is an SISO
controller and the internal relations between multiple PID
controllers cannot be established. Therefore, Skynet is not
optimal. Dechouniotis et al. [19] employs admission control
for regulation. The offline phase includes identifying the lin-
ear parameter-varying (LPV) system and setting operational
points, while the online phase includes optimizing the re-
sources. The taxonomy [22] comprised of relevant attributes
defining the following two perspectives, i.e., control-theory

as an implementation technique as well as cloud elasticity as
a target application domain.

Parties [6] and Heracles[17] consider the trade off of
High-dimensional resource configurations. But they need to
test many times and select the resources that can reach the
target performance of the application. The multiple testing
method is time-consuming, which significantly reduces the
response speed.

Similar to Kubernetes HPA, Autopilot [4] monitors pre-
vious resource usage of multiple pods rather than SLO.
It adjusts the resource allocation based on the carefully
designed rules. However, designing the rules requires pro-
fessional experience and lots of tricks, which have great lim-
itations and cannot be widely applied. Similar to autopilot,
SHOWAR [5] monitors runq latency [23] which can reflect
the intensity of CPU contention. However, it also needs
carefully designed rules and professional experience.

Gandhi et al. [14] have used Kalman filtering [24] to
model the queuing model of cloud application requests.
However, the model does not consider the allocation of
multiple resources.

Bashir et al. [10] estimate the peak resource consumption
of the application and develop an overcommitment strategy
based on this peak prediction. However, it faces the risk of
inaccurate performance predictions.

Liu et al. [15] propose that the number of threads for
an application should be adjusted after autoscaling is ap-
plied. They fit model offline. However, they do not consider
the high-dimensional optimization of CPU, memory, and
network bandwidth resources, and offline optimized mod-
els cannot adapt to online fluctuating systems. Similarly,
StepConf [16] describes the offline model of replicas and
application performance, but in the online environment, due
to the contention of underlying hardware resources, the
performance of the application will be affected, and the
offline model is not accurate. Parslo [13] also uses the offline
model and cannot be applied to vertical scaling.
2.2. Learning Based Method

Rossi et al. [8] have used RL for resource allocation. To
speed up the training process, they adopted a model-based
RL approach, which, however, introduces modeling errors
and cannot avoid online disturbances. Similarly, FIRM [7]
also applies RL methods. It trains the algorithm on real
clusters, but this leads to excessively long training times.

Besides, Yu et al. [11] use Bayesian optimization to fit
the performance model online, but this required multiple
tests and data collection, which reduced the response time
of the system. DeepRest[12] estimates application resource
utilization using an neural network based on attention mech-
anism. But this method cannot guarantee SLO. Horn et
al.[18] use machine learning (ML) methods to model the
relationship between application performance and resource
allocation offline. But the optimality of its scaling algorithm
cannot be guaranteed. Sinan[21] fully collects offline data to
predict the long-tail delay, and heuristically adjusts resource
allocation according to the established ML model.
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Table 1
Summary of the available choices of a resource management system.

Work SLO Guar. Resrc. Type High Dim. Resrc. Optim. Model Online Adapt. Reduce Noise

Autopilot, 2020 [4] Multiple

Bashir et al. , 2021 [10] Multiple

K8s HPA Multiple

Skynet, 2021 [3] Multiple

PARTIES, 2019 [6] Multiple

Microscaler, 2019 [11] Single

FIRM, 2020 [7] Multiple

DeepRest, 2022 [12] Multiple

Rossi et al. , 2019 [8] Single

Parslo, 2021 [13] -

SHOWAR, 2021 [5] Multiple

Gandhi et al. , 2014 [14] Single

Liu et al., 2022 [15] Multiple

StepConf, 2022 [16] Multiple

Heracles, 2015 [17] Multiple

Horn et al. , 2022 [18] Multiple

Dechouniotis et al. , 2015 [19] Multiple

Spatharaki et al. ,2022 [20] Multiple

Sinan et al. , 2021 [21] Multiple

Sonnet Multiple

Spatharaki et al. [20] dynamically redirects incoming
requests using a novel AIMD-like task scheduling solution to
manage varying workloads. To handle dynamic workloads,
a prediction mechanism estimates the number of incom-
ing requests. Additionally, a ML-based application profiling
model is introduced to address scalability issues.

Existing approaches either rely on simplistic and gen-
eral heuristics that ignore resource-specific characteristics or
require service suspension to obtain expert knowledge for
optimizing resource costs for new applications or runtimes,
failing to finely optimize resource allocation.

In this paper, we propose Sonnet, which can efficiently
optimize the cost of resources while satisfying the SLO by
quickly establishing new application performance models
through only online profiling and without affecting service.

3. Motivation
A resource management system has a straight-forward

goal: assign the minimum amount of resources for each ap-
plication to reach a target performance. Therefore, resource
managers need to deal with diverse applications, various
application loads, high-dimensional resources (e.g., CPU,
memory, etc), and inter-applications interference. However,
in the existing system, the amount of resources is often

manually specified by the users. To avoid SLO violations and
out of memory (OOM) errors caused by insufficient resource
allocation, operators tend to over-allocate resources, which
can lead to higher costs.

To understand the coupling relationship between SLO
(e.g., latency) and high-dimensional resources, we have con-
ducted some experiments on widely used application bench-
marks (i.e. Memtier Benchmark [25], Apache HTTP server
benchmarking tool [26], etc). Our key insights are as follows.
3.1. Load Changes

Typical load of a online application has inherent dy-
namic behavior. For example, the number of visits to Google
is changing all the time. There is an internal relationship
between load and resources. We need to adjust resource
allocation after load changes.

As shown in Fig. 1, the load of Nginx in an online
application changes dynamically. In Fig. 1, the unit of CPU
is the number of cores. We define the unit of CPU as the
number of cores. Specifically, when we mention 0.2 CPU, it
implies that the container is capable of utilizing up to 20% of
the time of a single CPU core. The load is the concurrency of
Nginx, which means the number of requests at the same time.
We change the loads of Nginx by changing the concurrency.
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Figure 1: Load changes cause SLO violations in Nginx.

0.1 0.2 0.3 0.4 0.6 0.8
CPU

150

105

73

51

25

12

M
em

or
y 
(M

B)

5.2 3.2 2.1 1.4 0.9 0.6

6.2 4.2 2.4 1.5 1 0.6

6.7 4.2 2.6 1.7 1.1 0.7

6.7 4.2 2.7 1.7 1.1 0.7

7.4 4.4 2.5 1.8 1.2 0.8

10 5.7 3.4 2.2 1.5 1.1

(a) ML

0.2 0.3 0.6 0.8 1.1 2.0
CPU

29.3

22.0

16.5

12.4

9.3

7.0

Ne
t (
M
Bp

s)

9.8 5.3 3.4 3.3 3.3 3.2

9.7 5.2 3.2 3.2 3.2 3.3

9.8 5.5 4 3.9 4 3.9

9.8 5.4 5.2 5.2 5.2 5.3

9.6 6.8 7 7 7 6.9

10 9.1 9.5 9.5 9.4 9.3 4

5

6

7

8

9

10

re
la
tiv

e 
la
te
nc

y

(b) Memcached
Figure 2: Applications have different sensitivities to different
kinds of resources.

When resource allocation is fixed, latency will increase as
the load rises.

We can find that when the load decreases, the CPU
resource should be scaled down. When the load increases,
the CPU resource should be expanded. For example, at about
1200 seconds, the load of Nginx is increased from 8 to 20,
resulting in an increase of latency. Under this circumstance,
we need to increase the resources (e.g., CPU) to ensure
the achievement of target SLO. But at about 3200 seconds,
we need to decrease the resources to reduce the costs.
An efficient resource allocation framework should allocate
resources to every application proactively, according to the
load changes. However, it is difficult or even impossible to
model the relationship between load and resources.
3.2. High-Dimensional Resource Allocation

The performance of an application is influenced by a
variety of resources. The sensitivity of applications to CPU
and memory is different. The performance bottlenecks of
the applications vary among different resources as the load
changes. It is difficult to derive the optimal resource alloca-
tion strategy.

The workload of ML is Random Forest training. As
shown in Fig. 2(a), the sensitivity of ML to CPU and mem-
ory are different. For example, the performance of 0.6 CPU
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(b) Remove Sonnet network interference isolator
Figure 3: Latency spikes on applications due to low-level
resource contention.

and 12 MB memory is approximately equivalent to that of
0.4 CPU and 105 MB memory. When the CPU is reduced
by 1.5 times, the memory needs to be expanded by 8.75
times to keep the same performance. As shown in Fig. 2(b),
when the network bandwidth is 9.3MBps, increasing the
CPU from 0.2 to 0.3 can bring Memcached [27] perfor-
mance improvement. When we further increase the CPU, the
performance of the application does not improve when the
network bandwidth remains 9.3MBps. And the performance
bottleneck changes from the CPU to the network bandwidth.
3.3. Interference between Applications

Although there are various resource isolation technolo-
gies such as container (e.g., Docker [28]). However, mul-
tiple containers on the same machine multiplex resources,
such as network link, memory, CPU, and others, will have
interference for a shared resource. The interference between
applications will increase the SLO violations seriously. As
shown in Fig. 3, we take network interference as an ex-
ample. With the same load, if Sonnet considers resource
contention, the latency of Nginx remains stable and can be
well controlled near the target SLO. However, if the network
interference isolator in Sonnet is removed, a large number of
SLO violations occur, and the latency is unstable. As shown
in Fig. 3, the latency can exceed 150 ms, which is 19 times
larger than the target SLO.

As mentioned before, how to allocate the resources with
the minimal costs to each application satisfying the target
SLO is very difficult. But a well-designed resource allocator
can not only ensure the target SLO, but also significantly
reduce user costs. Therefore, it is necessary for the re-
source allocator to dynamically adjust itself according to
the changes of the system in real time to find an efficient
allocation strategy.
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4. Sonnet Design
Sonnet has a straight-forward goal: given a fixed set

of resources with predefined prices. Then, assigning the
resources with minimal cost to each application which can
reach the acceptable performance online. To achieve this
goal, we need to solve the optimization problem which
establishes the relationship between SLO and resource cost.
The control objective can be formulated as

min
[

(

𝑦∗(𝑘 + 1) − 𝑦(𝑘 + 1)
)2 + 𝝋𝒖(𝑘)

]

, (1)
where the 𝑘 refers to time steps. 𝑦∗ represents the target SLO,
and 𝑦 represents the measured performance, both of which
are 1 × 1 scalars. 𝒖 denotes the allocation of resources, en-
compassing CPU, memory, and network bandwidth, repre-
sented as a 3×1 vector. 𝝋 is the cost vector, representing the
price associated with each resource, and it is a 1 × 3 vector.
Users can scale the value of 𝝋 proportionally to balance
performance and cost. If performance guarantees are more
important, the value of 𝝋 can be decreased proportionally.
If resource cost is more important, the value of 𝝋 can be
increased proportionally. The total resource cost is 𝝋𝒖(𝑘),
and (𝑦∗(𝑘 + 1) − 𝑦(𝑘 + 1))2 represents the error between the
measured latency and target SLO.

As mentioned in Section 3, resource allocator needs to
consider load changes of application, interference between
applications, and high-dimensional resource allocation. In
this paper, we design the system architecture of Sonnet as
shown in Fig. 4. The model estimator and controller are the
two core components of Sonnet. With model estimator and
controller, we build the modified MFAC algorithm to control
the system. Particularly, the model estimator identifies the
system model with dynamic linearization [9]. According to
the identified model and the custom resource cost function,
the controller outputs the volume of resources with minimal
cost to reach the target SLO. The detailed design of model
estimator and controller will be discussed in the following
sections.

In this paper, we implement Sonnet on Docker Swarm.
Note that Docker has no option to manage the network
bandwidth at present [29]. As mentioned in Section 3.2, the
contention of network bandwidth will cause interference.
Therefore, we use Linux traffic control [30] to build a
network isolator to avoid bandwidth interference. Latency
measurement is often mixed with noise, which will seriously
affect the performance of Sonnet. In this paper, we use a low
pass filter to eliminate measurement noise.
4.1. Model Estimator

In this section, we introduce how to use the dynamic
linearization to model an application as a multiple-input and
single-output (MISO) system. The dynamic linearization
method, as demonstrated in Fig. 5, can rapidly adjust the
estimated value of the performance model to accommodate
varying resource allocations, approximating the nonlinear
system in segmented intervals. Dynamic linearization shows
great model identification performance and has been widely
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Figure 4: The architecture of Sonnet.

Table 2
Main Notations

𝑦∗ the target SLO
𝑦 the measured performance
𝝋 the cost vector for the resources
𝑘 the time steps
𝑢 the allocation of resources

𝒇 (⋅) the application system
𝚽 the PJM of the application system

𝑛𝑢, 𝑛𝑦 the orders of input and output
𝜇 the parameter to penalize changes in PJM
𝜆 the parameter to penalize changes in 𝒖(𝑘)
𝑀 the number of points in moving average filter.
𝑦𝑜𝑢𝑡 the output of the filter.
𝑦𝑖𝑛 the input of the filter.
𝑚1 the concurrency before the load change.
𝑚2 the concurrency after the load change.
𝜏 the first-order low-pass filter coefficient.
𝑇 the sampling period of the latency.

used in practical systems, such as unmanned surface ve-
hicles [31], autonomous cars [32], quadrotor aircraft [33],
wide-area power systems [34], etc. It provides state estima-
tion for the MFAC algorithm.

As shown in Fig. 4, the resource allocation system is a
MISO system. It can be regarded as a discrete-time nonlinear
system as
𝑦(𝑘+1) = 𝑓

(

𝑦(𝑘),⋯ , 𝑦(𝑘 − 𝑛𝑦), 𝒖(𝑘),⋯ , 𝒖(𝑘 − 𝑛𝑢)
)

, (2)
where 𝑦(𝑘) ∈ R represents the output of the system at time 𝑘
(eg., the service performance of the application). 𝒖(𝑘) ∈ 𝐑𝑚

represents the input of the system (eg., the m-type resources
to be allocated, which is a column vector of size m). The
𝑛𝑦 and 𝑛𝑢 are the orders of input and output, and 𝒇 (⋅) is the
system function for application.

We assume that 𝒇 (⋅) in Eqn. (2) satisfies the generalized
Lipschitz condition, which means for ∀𝑘1 ≠ 𝑘2, the 𝑘1, 𝑘2 ≥
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Figure 5: PPD models the relationship between resource
allocation and quality of service (latency)
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, (3)
where 𝑦(𝑘𝑖 + 1) = 𝒇 (𝑦(𝑘𝑖),… , 𝑦(𝑘𝑖 − 𝑛𝑦), 𝒖(𝑘𝑖),… , 𝒖(𝑘𝑖 −
𝑛𝑢)), 𝑖 = 1, 2. 𝑏 is an arbitrary positive constant that con-
strains the rate at which the function can change.

When the partial derivatives of 𝒇 (⋅) with respect to all
variables are continuous, then the system defined in Eqn. (2)
can be transformed into a linear system as [9]

Δ𝑦(𝑘 + 1) = 𝚽(𝑘)Δ𝒖(𝑘) (4)
where𝚽(𝑘) = (𝜙11(𝑘), 𝜙12(𝑘), 𝜙13(𝑘)) ∈ 𝐑1×3 is the pseudo
jacobian matrix (PJM) of the system in Eqn. (2), which is a
1× 3 vector. Δ𝑦(𝑘+1) is equal to 𝑦(𝑘+1)− 𝑦(𝑘) and Δ𝒖(𝑘)
is equal to 𝒖(𝑘) − 𝒖(𝑘 − 1).

In order to show a clear description of the above method,
we take a SISO nonlinear system as an example. For
SISO system, PJM can be written as pseudo-partial deriva-
tive (PPD) 𝜙𝑐(𝑘) ∈ R. PPD represents the derivative of
the nonlinear function 𝒇 (⋅) between 𝒖(𝑘 − 1) and 𝒖(𝑘). The
geometric interpretation of PPD is shown in the Fig. 5. The
segmented dotted line represents the dynamic linearized
model established with the information of historical resource
allocation and performance (e.g., latency). The boundedness
of PPD means that the nonlinear function does not undergo
abrupt changes, that is, it is a bounded derivative value.
This bounded condition also coincides with in the resource
allocation system.

To estimate PJM, we minimize the following parameter
estimation criterion function [9] as

𝑃 (𝚽(𝑘)) = (Δ𝑦(𝑘) −𝚽(𝑘)Δ𝒖(𝑘 − 1))2

+ 𝜇‖𝚽(𝑘) − �̂�(𝑘 − 1)‖2,
(5)

where 𝜇 > 0 is a parameter used to penalize excessive
changes in PJM. Δ𝑦(𝑘) and Δ𝒖(𝑘 − 1) in Eqn. (5) represent
𝑦(𝑘) − 𝑦(𝑘 − 1) and 𝒖(𝑘 − 1) − 𝒖(𝑘 − 2) respectively. In

order to find the minimum of Eqn. (5), we set the derivation
of 𝑃 (𝚽(𝑘)) equal to zero, the estimation of PJM [9] can be
obtained by Eqn. (6)

�̂�(𝑘) =�̂�(𝑘 − 1)

+
𝜂
(

Δ𝑦(𝑘) − �̂�(𝑘 − 1)Δ𝒖(𝑘 − 1)
)

𝜇 + ‖Δ𝒖(𝑘 − 1)‖2

× Δ𝒖T(𝑘 − 1),

(6)

where 𝜂 is a step length. In this paper, we set 𝜂 = 1 and
𝜇 ∈ (0, 15].
4.2. Controller Design

As mentioned in Eqn. (1), we need to solve the opti-
mization problem to meet the target SLO while saving costs.
For a control system, we must ensure that the control input
should not change too rapidly, otherwise the performance of
the whole control system will be greatly affected, resulting in
uncontrollable. The control objective of the original MFAC
algorithm is 𝐽 (𝒖(𝑘)) = (𝑦∗(𝑘 + 1) − 𝑦(𝑘 + 1))2 + 𝜆‖𝒖(𝑘) −
𝒖(𝑘 − 1)‖2. We add the resource cost 𝝋𝒖(k) into the control
objective for modified MFAC. This aims to find a low
cost setting among several different resource configurations
that can reach the same target SLO. Therefore, we set the
optimization goal as

𝐽 (𝒖(𝑘)) =
(

𝑦∗(𝑘 + 1) − 𝑦(𝑘 + 1)
)2

+ 𝜆‖𝒖(𝑘) − 𝒖(𝑘 − 1)‖2 + 𝝋𝒖(𝑘),
(7)

where the first term of Eqn. (7) is to guarantee target SLO,
𝜆 > 0 is a parameter used to penalize excessive changes
in 𝒖(𝑘), and the third term is to optimize total cost of
resources. This regularization term 𝜆‖𝒖(𝑘) − 𝒖(𝑘 − 1)‖2
helps to maintain smooth variations in the control process
and prevents excessive oscillations. It can achieve a balance
between smoothness and speed of the control response by
appropriately choosing 𝜆.

This regularization term 𝜆‖𝒖(𝑘) − 𝒖(𝑘 − 1)‖2 can also
avoid the shock of the control quantity caused by the ex-
cessive change of 𝒖(𝑘), and the instability caused by the
excessive adjustment of resources in the computing system.

The modified MFAC both tracks the target SLO and
optimizes the cost. However, to achieve new control objec-
tives, we need to redesign the control policy. The control
objective of the modified MFAC is a convex function. Thus,
the objective function is minimized at the point where the
derivative is zero. Therefore, we take the derivative of the
objective function and set it equal to zero. Setting Δ𝑦(𝑘 +
1) = 𝑦(𝑘 + 1) − 𝑦(𝑘) and Δ𝒖(𝑘) = 𝒖(𝑘) − 𝒖(𝑘 − 1), Eqn. (7)
is equal to

𝐽 (𝒖(𝑘)) = ‖

‖

𝑦∗(𝑘 + 1) − 𝑦(𝑘) − Δ𝑦(𝑘 + 1)‖
‖

2

+ 𝜆‖Δ𝒖(𝑘)‖2 + 𝜑𝒖(k).
(8)
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We define the control error as
𝑒(𝑘) = 𝑦∗(𝑘 + 1) − 𝑦(𝑘), (9)

where 𝑦∗ is the target latency, and 𝑦(𝑘) is the latency at time
𝑘. Substitute Eqn. (4) into Eqn. (8), then we have
𝐽 (𝒖(𝑘)) = (𝑒(𝑘) −𝚽(𝑘)Δ𝒖(𝑘))𝑇 (𝑒(𝑘) −𝚽(𝑘)Δ𝒖(𝑘))

+ 𝜆Δ𝒖(𝑘)𝑇Δ𝒖(𝑘) + 𝝋𝒖(k)
= 𝑒(𝑘)2 − 2𝑒(𝑘)𝚽(𝑘)Δ𝒖(𝑘) + 𝝋𝒖(k)
+ Δ𝒖(𝑘)𝑇

(

𝜆𝐼 +𝚽𝑇 (𝑘)𝚽(𝑘)
)

Δ𝒖(𝑘).

(10)

Since 𝜕𝐽
𝜕Δ𝒖(𝑘) =

𝜕𝐽
𝜕𝒖(𝑘) , the derivation of 𝐽 (𝒖𝑘) is

𝜕𝐽
𝜕𝒖(𝑘)

= 2
(

𝜆𝐼 +𝚽𝑇 (𝑘)𝚽(𝑘)
)

Δ𝒖(𝑘)

− 2𝑒(𝑘)𝚽𝑇 (𝑘) + 𝝋𝑇 .
(11)

Minimizing 𝐽 (𝒖(𝑘)) with respect to 𝒖(𝑘), we set the deriva-
tion of 𝐽 (𝒖(𝑘)) to 0. Since �̂�(𝑘) is the estimation value of
𝚽(𝑘), then we have

Δ𝒖(𝑘) =
(

𝜆𝐼 + �̂�𝑇 (𝑘)�̂�(𝑘)
)−1

(

𝑒(𝑘)�̂�𝑇 (𝑘) −
𝝋𝑇

2

)

.

(12)
To avoid complex matrix inversion operations and reduce
computation time, we can use the matrix inversion lemma,
the estimation of 𝒖(𝑘) satisfies

�̂�(𝑘) = �̂�(𝑘 − 1) +
𝜌(𝑒(𝑘)�̂�𝑇 (𝑘) − 𝝋𝑇

2 )

𝜆 + ‖

‖

‖

�̂�(𝑘)‖‖
‖

2
, (13)

where 𝜌 is a step length. In this paper, we set 𝜌 = 1 and
𝜆 = 15. Substituting Eqn. (6) into Eqn. (13), the control
input of Sonnet has been calculated. Then, Sonnet applies
Eqn. (13) to allocate resources for each application. By this
method, Sonnet can not only ensure the application to reach
the desired SLO, but also minimize the resource costs.

As shown in Fig.1 in Section 3.1, when the load (the
concurrency of request) changes, the application latency will
change drastically. We want the control error of the latency to
be limited and gradually decrease with Sonnet’s algorithm.
Therefore, we analyze the limit of the latency and the trend
of the error.

The results of the analysis are as follows: consider the
request concurrency changes from from 𝑚1 to 𝑚2 at time
𝑘𝑐ℎ𝑎𝑛𝑔𝑒. When the entries in 𝝋 are small enough, for ∀𝑘 >
𝑘𝑐ℎ𝑎𝑛𝑔𝑒, the latency 𝑦2 satisfies

𝑦2(𝑘) ≤
1 + 𝑚2
1 + 𝑚1

𝑦1, (14)

where 𝑦1 is the latency before the sudden change of con-
currency. That is, the system has bounded input, bounded
output stability for the changes of the concurrency 𝑚2.

Besides, the absolute value of control error of the latency
gradually decreases until 𝜌𝑒(𝑘)𝚽(𝑘)�̂�T(𝑘)∕(𝜆+‖�̂�(𝑘)‖2) =
𝜌𝚽(𝑘)𝝋T∕(2(𝜆 + ‖�̂�(𝑘)‖2).

The analysis is as follows. Substitute Δ𝑦(𝑘 + 1) =
𝚽(𝑘)Δ𝒖(𝑘) into Eqn. (9) to get

𝑒(𝑘 + 1) = 𝑒(𝑘) −𝚽(𝑘)Δ𝒖(𝑘)

= 𝑒(𝑘) −
𝜌𝚽(𝑘)�̂�T(𝑘)

𝜆 + ‖

‖

‖

�̂�(𝑘)‖‖
‖

2
𝑒(𝑘)

+
𝜌𝚽(𝑘)𝝋𝑇

2(𝜆 + ‖

‖

‖

�̂�(𝑘)‖‖
‖

2
)
,

(15)

where the dimension of 𝑒(𝑘) is 1 × 1, the dimension of
𝚽(𝑘) is 1 × 3, and the dimension of 𝝋 is 1 × 3. When it
satisfies [𝜌𝚽(𝑘)𝝋T∕2(𝜆+‖�̂�(𝑘)‖2)−𝜌𝑒(𝑘)𝚽(𝑘)�̂�T(𝑘)∕(𝜆+
‖�̂�(𝑘)‖2)]𝑒(𝑘) < 0, the error will decrease.

For control systems, the value of |𝒆(𝑘)| at the initial
moment of interference is large. If the entries in 𝝋 are small
enough, the error decreases until 𝜌𝑒(𝑘)𝚽(𝑘)�̂�T(𝑘)∕(𝜆 +
‖�̂�(𝑘)‖2) = 𝜌𝚽(𝑘)𝝋T∕(2(𝜆 + ‖�̂�(𝑘)‖2).

The initial error of latency can be calculated by the
𝑀∕𝑀∕1 model in the queueing theory. The average latency
in the 𝑀∕𝑀∕1 model can be calculated by 1∕(𝜃−𝛾), where
𝛾 is the arriving rate according to a Poisson process, and 𝜃 is
the service time. 𝑦1 is the latency before the sudden change
of the system. The request arrival rate is the concurrency
divided by the average latency, which is 𝑚1∕𝑦1. It has

𝑦1 =
1

𝜃 − 𝑚1
𝑦1

. (16)

So 𝜃 = (1 + 𝑚1)∕𝑦1. 𝑦2 is the latency after the sudden
change of the system. The request arrival rate is 𝑚2∕𝑦2. It
has

𝑦2 =
1

𝜃 − 𝑚2
𝑦2

. (17)

After transformation, we can get

𝑦2 =
1 + 𝑚2
1 + 𝑚1

𝑦1. (18)

As indicated by the Eqn. (15), if the entries in 𝝋
are small enough, the error will gradually decrease un-
til 𝜌𝑒(𝑘)𝚽(𝑘)�̂�T(𝑘)∕(𝜆 + ‖�̂�(𝑘)‖2) = 𝜌𝚽(𝑘)𝝋T∕(2(𝜆 +
‖�̂�(𝑘)‖2). So for ∀𝑘 > 𝑘𝑐ℎ𝑎𝑛𝑔𝑒, the latency 𝑦2 satisfies
Eqn. (14).
4.3. Latency Measurement Filtering

In Sonnet, the controller takes the 𝑒(𝑘) = 𝑦∗(𝑘+1)−𝑦(𝑘)
as the input, then outputs the resource allocation strategy.
Obviously, we need to measure the latency 𝑦(𝑘). However,
due to the bugs in hardware or software, the measurements
are always with noise. In control systems, the noise will
bring great challenges to the controller design. And if it is
not handled well, the control system will oscillate, or even
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Figure 6: Frequency response of the moving average filter and
low pass filter.

unstable. Therefore, in order to ensure the performance of
Sonnet, we need a filter to eliminate the noise.

As shown in Fig. 6, there are two kinds of widely used
filters: moving average filter and first-order low pass filter.
The moving average filter is

𝑦𝑜𝑢𝑡(𝑘) =
1
𝑀

𝑘
∑

𝑗=𝑘−𝑀
𝑦𝑖𝑛(𝑗), (19)

where 𝑦𝑜𝑢𝑡(𝑘) is the output of the filter at time 𝑘, which is the
filtered latency. 𝑦𝑖𝑛(⋅) is the input signal, which is the latency
measurement. 𝑀 is the number of points used in the moving
average filter.

Due to slow roll-off and poor stopband attenuation, as
shown in Fig. 6, the moving average is a very poor low-
pass filter. So we take the first-order low pass filter to filter
the latency measurement, The filtering strength of high-
frequency signals is determined by the filter coefficient 𝜏
and the sampling period of the signal. The equation of the
first-order low pass filter is

𝜏
𝑑𝑦𝑜𝑢𝑡
𝑑𝑡

+ 𝑦𝑜𝑢𝑡 = 𝑦𝑖𝑛, (20)
where 𝑦𝑜𝑢𝑡 is the output of the filter, which is the filtered
latency. 𝑦𝑖𝑛 is the input signal, which is the latency measure-
ment. 𝑑𝑦𝑜𝑢𝑡 represents the differential of the output signal,
while 𝑑𝑡 represents the differential of time. Performing
Laplace transform [35] on Eqn. (20), we get the transfer
function as

𝐺(𝑠) =
𝑦𝑜𝑢𝑡(𝑠)
𝑦𝑖𝑛(𝑠)

= 1
𝜏𝑠 + 1

. (21)
Transforming the transfer function 𝐺(𝑠) from the 𝑆

domain to the 𝑍 domain using the first-order backward
difference method, we have

𝐺(𝑧) =
𝑌𝑜𝑢𝑡(𝑧)
𝑌𝑖𝑛(𝑧)

= 𝑇
𝜏
(

1 − 𝑧−1
)

+ 𝑇
, (22)

Algorithm 1 Sonnet’s workflow
1: Set the resource cost vector 𝝋
2: Set the target latency SLO 𝑦∗
3: Initialize 𝚽(𝟎), 𝒖(0), 𝜂, 𝜇, 𝜌, 𝜆
4: for 𝑘 in 1, 2,⋯ , do
5: Generate the workload and measure the latency 𝑦(𝑘)
6: Filter 𝑦 based on Eqn. (23)
7: Calculate Δ𝒖𝑘 and Δ𝑦𝑘
8: Estimate system model �̂�(𝑘) By Eqn. (6)
9: Calculate 𝑒 = 𝑦∗(𝑘 + 1) − 𝑦(𝑘)

10: Calculate CPU, memory, and network bandwidth al-
location �̂�(𝑘) using Eqn. (13)

11: Use Docker API to update CPU and memory
12: Use Linux traffic control to isolate net bandwidth
13: end for

Performing an inverse Z-transform on Eqn. (22), we can get

𝑦𝑜𝑢𝑡(𝑘) =
𝑇

𝜏 + 𝑇
𝑦𝑖𝑛(𝑘) +

𝜏
𝜏 + 𝑇

𝑦𝑜𝑢𝑡(𝑘 − 1), (23)
where 𝑦𝑖𝑛(𝑘) is the measured latency at time 𝑘 and 𝑦𝑜𝑢𝑡(𝑘−1)
is the filtered result at time 𝑘 − 1. In this paper, we set
𝑇 ∕(𝜏 + 𝑇 ) ∈ [0.2, 0.5]. From the experiments, we find that
the low-pass filter can effectively eliminate measurement
noise.
4.4. Implementation

We implement Sonnet on Docker Swarm cluster. The
user presets the cost vector 𝝋 according to the resources
price. As shown in Fig 4, firstly we use open source bench-
mark tools such as Apache HTTP server [26], Scikit-learn [36],
and memtier [25] to generate workloads and measure quality
of service (e.g., latency). Latency measurement is always
with noise due to bugs in hardware and software. We use a
low pass filter introduced in Section 4.3 to eliminate noise.

Secondly, we use dynamic linearization to estimate sys-
tem model. Model estimator needs the historical control in-
put and system output information. So we collect the data of
historical resource allocation and latency. After estimating
the PJM �̂�(𝑘), then we calculate the resource allocation
vector �̂�(𝑘). Eqn. (13) shows resource allocation at present
related to historical resource allocation �̂�(𝑘 − 1), estimated
PJM �̂�(𝑘), cost vector 𝝋, target SLO 𝑦∗(𝑘), and measured
latency 𝑦(𝑘).

Finally, we update the resource allocation according to
�̂�(𝑘). Currently, a large number of applications are deployed
on the same server, and they compete for shared resources
(e.g., network bandwidth) from each other. In this paper, for
CPU and memory, we use Docker to isolate the resources,
and Docker API to update the corresponding resources.
Currently, Docker still lacks the ability to limit network
bandwidth of containers [29]. As has been discussed in Sec-
tion 3.2, the lack of network bandwidth isolation will lead to
mutual interference between applications. In this paper, we
use Linux traffic control [30] to limit the bandwidth of the
virtual network card of each Docker container. In this way,
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Table 3
Characteristics of the workloads

App workload load variation range
Nginx ab concurrency 8-20
ML - RF trees 25-70

Memcached Memtier Benchmark concurrency 10-25
Redis Memtier Benchmark concurrency 10-25

we isolate shared network resources between containers. The
workflow of Sonnet is shown in Algorithm 1. In line 1-
2, the user presets the resources cost vector 𝝋 and target
SLO 𝑦∗. And in line 3, the user gives the initial resource
allocation strategy 𝒖(0) and initializes 𝜂, 𝜇, 𝜌, 𝜆, and 𝚽(0).
In line 5-6, the workloads are generated. After the latency
been measured, we need to filter the latency. In line 7-9,
the resource allocation strategy 𝒖(𝒌) is calculated. And in
line 11-12, the resources are allocated by Docker and Linux
traffic control.

5. Performance Evaluation
To evaluate the performance of the proposed algo-

rithm, we compare it against the existing state-of-the-art ap-
proaches. In this section, we first describe the experimental
settings, followed by the experimental results and analysis.
5.1. Experimental Settings

We use 4 HUAWEI cloud HECS servers that constitute
a Docker Swarm cluster with a single master. The servers
are Intel(R) Xeon(R) CPU E5-2680 v4 Processors with: (1)
a frequency of 2.40GHz, (2) 8 cores, (3) 32GB of memory.
Four popular applications have been used in our experiment
to evaluate the performance of Sonnet.
Redis[37]: an in-memory data structure store, used as an
in-memory key–value database, cache and message broker.
This application is CPU and network bandwidth intensive.
Memcached[27]: a memory-caching system which is used to
speed up dynamic database-driven websites by caching data
and objects in RAM. This application is CPU and network
bandwidth intensive.
Nginx[38]: a web server, load balancer, and HTTP cache.
This application is CPU and network bandwidth intensive.
ML: we use scikit-learn[36] to train Random Forest[39].
This application is CPU and memory intensive.

We use latency as SLO metric. As shown in Table 3, we
use Apache HTTP server benchmarking tool (ab) [26] and
Memtier Benchmark [25] as workload generators for Redis,
Nginx and Memcached. We run the benchmarking tool for 5
seconds each time and take the average latency as the mea-
surement metric. The object data size for Memtier Bench-
mark is 32. The ratio of Set: Get is 1:10 for Memcached,
and 1:1 for Redis. The ab benchmarking processes [26]
constantly issue a uniformly random number of concurrent
requests in batches.

Concurrency means the number of requests to perform at
the same time. We change the loads of Nginx, Memcached,

and Redis by changing the concurrency. When resource
allocation is fixed, latency will increase as load rising. For
ML application, we change its load by changing the number
of Random Forest trees.

We compare our proposed method with two state-of-the-
arts and one baseline.
Parties [6]: it is a quality of service aware resource man-
ager that minimizes resource consumption without violating
SLO. Parties tests different resource configurations multiple
times and then increases or decreases resources of applica-
tions.
Skynet [3]: this is an automated and adaptive approach
to cloud resource management. Skynet estimates the re-
sources required to achieve the target SLO and uses aug-
mented Ziegler-Nichols [40] PID controllers to allocate the
resources.
Oracle: we have developed an Oracle resource allocator
which is capable of allocating resources with near-perfect
accuracy. Since it takes a lot of time to collect data, it is not
feasible in practical scenarios. We use it to measure the gap
between Sonnet and the best allocation. To achieve this, we
employ an offline grid search profiling approach, gathering
a total of 20 × 20 × 20 × 5 × 4 = 160, 000 data points
for each application(20 for the CPU, 20 for the memory, 20
for the network bandwidth, 4 for different loads settings. We
repeated each configuration 5 times and set the mean value
as the evaluation). The points that do not violate the target
SLO with the smallest resource cost are set as Oracle.

Finally, we set the load changes as a step signal. The
range of load variation is shown in Table 3. As shown in
Fig. 7b, the load will complete 14 step changes in 5 hours.
The load changes about every 21.5 minutes on average. In
the most extreme case, the load will increase or decrease 2.8
times at an instant. For Memcached and Redis, the 𝑇 ∕(𝑅𝐶+
𝑇 ) in Section 4.3 is set as 0.5, while for Nginx, it is set as
0.3. And for ML, it is set as 0.2. The periods of performance
measurement and resource adaptation are both 7 seconds
for Nginx, Redis, and Memcached. This means that every
7 seconds, Sonnet checks the average latency and adjusts
resource allocation. Because ML has a longer latency and
requires more measurement time, the resource adaptation
for ML is up to 60 seconds. Commercial cloud services
(i.e., Google Cloud [41]) also support per-second billing.
We change the load rapidly and drastically to simulate more
extreme application scenarios.
5.2. Convergence Evaluation

To verify that Sonnet can adapt to dynamic workloads,
we conducted a 5-hour evaluation on Nginx. As shown in
Fig. 7, Sonnet can estimate the system model during load
changing. With the estimated model, Sonnet dynamically
controls the resource allocation to adapt to load changes.

Fig. 7(a) shows the request latency of Nginx. We want
to minimize the control objective in Eqn. (1). To avoid
excessive cost increases, there are still a small number of
SLO violations when the load changes suddenly. But, as

Ruifeng Ma et al.: Preprint submitted to Elsevier Page 9 of 16



Sonnet: A Control-Theoretic Approach for Resource Allocation in Cluster Management

0 3000 6000 9000 12000 15000
Time(s)

5

10

15

20
La

te
nc

y
latency
target SLO

(a) The latency of Nginx

0 5000 10000 15000
Time(s)

8

10

12

14

16

18

20

Lo
ad

Load
Cost Per Second

0.003

0.004

0.005

0.006

0.007

0.008

Co
st
 P
er
 S
ec

on
d

(b) The dynamic load and costs

0 5000 10000 15000
Time(s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Th
e 
Va

lu
e 
of
 Φ

ϕ11
ϕ12
ϕ13

(c) Adaptive Estimation of System
State

0 5000 10000 15000
Time(s)

0.10

0.15

0.20

0.25

0.30

CP
U

(d) CPU of Nginx

0 5000 10000 15000
Time(s)

11000

12000

13000

14000

15000

16000

17000

M
em

or
y 
(K
B)

(e) Memory of Nginx

0 5000 10000 15000
Time(s)

3000

4000

5000

6000

7000

8000

Ne
tw

or
k 
Ba

nd
wi
dt
h 
(K
bp

s)

(f) Network Bandwidth of Nginx
Figure 7: Sonnet adapts to changing load.
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Figure 8: The low-pass filter can filter out measurement noise for ML applications, thereby avoiding unnecessary resource allocation
fluctuations.

Table 4
Performance Metric

Total costs SLO violation rate
App Sonnet Oracle PARTIES Skynet Sonnet Oracle PARTIES Skynet
Memcached 954.95 967.47 957.77 998.31 2.88% 0.19% 17.65% 9.10%
ML 154.36 154.54 170.64 168.02 4.63% 0.19% 20.92% 50.08%
Nginx 992.94 967.09 1874.85 1001.89 1.47% 0.04% 4.04% 7.62%
Redis 1007.84 1028.11 1034.85 1034.79 4.19% 0.0% 14.04% 8.90%
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Figure 9: Latency and resources of ML when varying the load of application.
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Figure 10: Latency and resources of Redis when varying the load of application.

shown in Fig. 7(a), Sonnet can quickly adjust the resource
allocation to pull back the latency to meet the latency SLO.

Fig. 7(c) shows the system model estimation �̂� calcu-
lated by Eqn. (2). The estimation varies as load changes.

When the load changes, Sonnet can quickly update the esti-
mated value of the system, and then converge to a constant
quickly. At around 10500 seconds, the load drops sharply,
and so does our estimated system model. At around 16, 000
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Figure 11: Latency and resources of Nginx when varying the load of application.

Table 5
Algorithms Execution Time

Algorithm Execution time (Seconds)
Sonnet 3.03 × 10−3 ± 1.30 × 10−4
Skynet 9.18 × 10−4 ± 5.76 × 10−5

PARTIES 4.67 ± 0.44

seconds, the load suddenly increases, and our estimation can
also follow the changes quickly.
5.3. The Effectiveness of Filter

Owing to server hardware and software issues, service
performance metrics are often corrupted by noise. Fig. 9(a)
shows that we configure the application’s resources to an
almost optimal constant configuration, the performance of
the application is full of fluctuations. We apply a filter to
reduce the effect of noise.

Fig. 8 compares the performance of sonnet retaining
filter and removing filter under ML application. As shown in
Fig. 8(a), at around 2000 seconds, the latency measurement
is full of fluctuations. If the low-pass filter is removed,
the controller in Section 4-2 will suffer from frequent, un-
necessary resource allocation adjustments as illustrated in
Fig. 8(e). As shown in Fig. 8(d), at about 2000 seconds, after
removing the low-pass filter, the fluctuation of the latency
becomes larger. What’s more, at about 3800 seconds, due
to the drastic change of the load, the resource allocation
of the controller also changes drastically. When the filter
is removed, as shown in Fig. 8(d), the system becomes
unstable.

5.4. Experimental Results and Analysis
On Docker Swarm cluster, we compared the perfor-

mance of Sonnet, PARTIES, Skynet, and Native methods
on ML, Redis, Nginx, and Memcached applications. The
resource cost vector 𝝋 in Eqn. (1) is set as [CPU, memory,
network bandwidth] = [3.6, 36, 36], which means you need
to pay 3.6 to use 1 CPU per hour, 36 to use 1 GB memory
per hour and 36 to use 1 Mbps network bandwidth per hour.
In the calculation, we convert the resource cost vector to
per second. The total cost in Table 4 integrates the resource
usage by time and obtains the total cost values.

For Redis, ML, and Memcached applications, the 𝜇 and
𝜆 have been set to 15. And for Nginx, the 𝜇 is set as 6
while 𝜆 remains at 15. To avoid SLO violations, we set 𝑦∗
in Eqn. (7) about 10% smaller than the target SLO. This is
a trick to reduce SLO violations. As shown in Fig. 9(a), the
measured values of most system noise will fluctuate within
10%. Therefore we set 𝑦∗ in Eqn. (7) about 10% smaller than
the target SLO to avoid defaults caused by noise fluctuations.
The experimental results are shown in Table 4 and Fig. 9-12.
Sonnet Effectiveness: In the four applications, Sonnet’s
SLO violation rate is below 5% when the load is changed
rapidly and drastically. This means that Sonnet’s resource
allocation can response quickly to load changes. Compared
with stat-of-the-arts, Sonnet can reduce SLO violation rate
by 91% at most, and reduce resource cost by 47%.

As shown in Fig. 9(a), Fig. 10(a), Fig. 11(a), and
Fig. 12(a), when the load changes suddenly, Sonnet can
quickly adjust the resource allocation to let the latency
meet the target SLO. Under Sonnet’s control, the applica-
tion’s latency remains constant with little jitter. Comparing
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Figure 12: Latency and resources of Memcached when varying the load of application.

Fig. 10(a) and Fig. 10(d), the performance fluctuations of
the two are at the same level, and the latency fluctuation of
Sonnet is close to that of Oracle.

Fig. 8(a) and 9(a) show that a latency violation occurs
when the load drops suddenly. This phenomenon is common
in control systems and is known as overshoot. In control
theory, overshoot means that when there is a step change
in the controlled system or reference signal, the signal will
exceed the target value. In compute resource allocation,
when the load decreases, the controller may reduce the
compute resource allocation too much in a short period of
time, resulting in SLO violations. Damm et al. [42] provided
the conditions for overshoot occurrence.

In Figs. 9-12, the resource usage consumed by 4 methods
is also displayed. In Fig. 12, Sonnet’s and Oracled’s config-
urations are the closest for each resource type. It is because
Skynet tends to overprovision resources and the PARTIES
configuration is full of jitter.
Comparison of Algorithm Execution Time: In general, the
algorithm execution times for Sonnet and Skynet can be con-
sidered negligible, while PARTIES requires a longer time.
As shown in Table 5, Sonnet’s algorithm requires about 3
milliseconds of processing time when executed in Python
on Intel(R) Xeon(R) CPU E5-2680 v4. Sonnet contains only
the Eqn. (6) and Eqn. (13). The calculation involves several
matrix multiplications and additions. The vector dimensions
are only three-dimensional, so the computation time is ex-
tremely short.

Similarly, Skynet [3] requires about 1 millisecond as
shown in Table 5. Skynet is equipped with an AZNPID for
each resource, and the computation process involves only

a few numerical multiplications and additions. PARTIES
performs multiple tests on different resource configurations,
requiring a few seconds for the resource configuration [6].
Comparison with Oracle: The Oracle resource allocator
fits the fully collected offline data, which can maintain the
SLO performance stability of the application when the load
changes, and save resource costs as much as possible. We
compare the performance difference between Oracle and
Sonnet to measure the performance of Sonnet.

In Memcached, ML, Nginx, Redis applications, the total
resource cost of Sonnet is only 1.31%, 0.12%, 2.67%, 1.97%
different from that of Oracle, respectively. This means that
the resource allocation of Sonnet is close to optimal. Com-
paring Fig. 10(a) and Fig. 10(d), the noise fluctuations of
Sonnet and Oracle are roughly the same.
Comparison with PARTIES: PARTIES tests different re-
source configurations many times to find the resources that
can improve the performance of the application. PARTIES
relies on tricks set by experts, making it difficult to generalize
to other scenarios.

For example, as shown in Fig. 9(b), the method of multi-
ple testing slows down the response speed of the controller.
If the resource allocation adjustment step size is too long,
the oscillation will occur, resulting in a larger SLO violation
rate. If the adjustment step size of the resource allocation
is set too short, measurement noise causes PARTIES to fail
to identify the resources that have the greatest impact on
the application, resulting in larger costs. Comparing Sonnet
with PARTIES, in Nginx, the total costs of PARTIES is 88%
larger than Sonnet, and the SLO violation rate is 175% larger
than Sonnet.
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Comparison with Skynet: Skynet uses Ziegler-Nichols PID
controllers, and it takes time to adjust the three gain param-
eters of proportional(P), integral(I), and differential(D). In
ML applications, due to the rapid and drastic changes in the
load, the adaptive changes of Skynet parameters cannot keep
up with the load changes. As shown in Fig. 9(c), Skynet is
trying to track load changes by adjusting resource allocation.
Unfortunately, in ML applications, Skynet is too slow to
adjust resource allocation, resulting in load changes again
before the target SLO is reached. As shown in Table 4, in the
ML application, the SLO violation rate is too high due to the
slow adjustment speed of Skynet. Skynet SLO violation rate
in the ML application is 9.81 times larger than Sonnet, even
exceeds Native which is not scaling containers. In Nginx,
Memcached and Redis applications, Skynet’s SLO violation
rate is larger than Sonnet’s due to the same problem. In the
Nginx application, Skynet SLO violation rate is 418% larger
than Sonnet.

Since the PID controller is a SISO system, Skynet uses a
set of PID controllers to control CPU, memory, and network
bandwidth, respectively. When the application has SLO
violations, the adaptive PID will increase the gain of all
the PID controllers proportionally at the same time, thereby
increasing the CPU, memory and network bandwidth nearly
proportionally at the same time. Therefore, Skynet can-
not achieve the optimal allocation of high-dimensional re-
sources as mentioned in Section 3.3. This leads to the need
of experts’ experience to carefully set bigger initial gains
for the PID which controls resources has a higher impact on
application performance.

In conclusion, because Skynet has slower adaptive pa-
rameter tuning speed and cannot achieve the optimal allo-
cation of high-dimensional resources, in Table 4, Sonnet
performs better than Skynet in both SLO violation rate and
total costs.

6. Conclusion
This paper is motivated by how to allocate the resources

to each application to reach the target SLO with cost-
effectiveness. As the application always has dynamic load
changes, interference with others, and high-dimensional
resources, blindly overprovisioning the resources to each
application to ensure the target SLO will lead to a massive
waste of resources, resulting in excessive costs. In this
paper, we propose to improve the effectiveness of the cluster
management by carefully controlling the resource allocation
strategy. The unawareness of the system characteristics
prompts us to use the control-theoretic approach to design
resource allocator. Therefore, we propose Sonnet, an end-
to-end online resource allocation system, which does not
require offline data collection. The model-free adaptive
control algorithm has been used to build a dynamic mapping
model between the target SLO and resources. Since Sonnet
does not require any prior knowledge, it can be quickly
adapted to various applications. The final experiments based
on four open-source benchmarks further demonstrate the

superiority of our methods as compared with the state-of-
the-arts.

In the future, we intend to extend our work in the follow-
ing ways: (1) With the widespread use of AI applications
such as ChatGPT and its stable spread, AI applications
require a lot of computing resources. This requires us to
finely allocate more types of resources such as GPU and
GPU memory. (2) The emergence of technologies such as
AWS Step Functions [43] have led to the integration of con-
tainerized applications into directed acyclic graph (DAG)
workflows. This integration presents new resource allocation
challenges, particularly in determining the optimal latency
division for individual nodes within the DAG. (3) To im-
prove resource utilization, it has become a new trend for clus-
ters to co-locate placing batch jobs and online services [44].
Batch jobs will cause a performance degradation to online
services, which can be regarded as disturbances in control
theory, and can be solved by control theory.

References
[1] C. Delimitrou, C. Kozyrakis, Quasar: resource-efficient and qos-

aware cluster management, in: R. Balasubramonian, A. Davis, S. V.
Adve (Eds.), Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2014, Salt Lake City, UT, USA, March
1-5, 2014, ACM, 2014, pp. 127–144. doi:10.1145/2541940.2541941.
URL https://doi.org/10.1145/2541940.2541941

[2] C. Delimitrou, C. Kozyrakis, Paragon: Qos-aware scheduling for
heterogeneous datacenters, in: V. Sarkar, R. Bodík (Eds.), Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS 2013, Houston, TX, USA, March 16-20, 2013, ACM, 2013,
pp. 77–88. doi:10.1145/2451116.2451125.
URL https://doi.org/10.1145/2451116.2451125

[3] Y. Sfakianakis, M. Marazakis, A. Bilas, Skynet: Performance-driven
resource management for dynamic workloads, in: C. A. Ardagna,
C. K. Chang, E. Daminai, R. Ranjan, Z. Wang, R. Ward, J. Zhang,
W. Zhang (Eds.), 14th IEEE International Conference on Cloud
Computing, CLOUD 2021, Chicago, IL, USA, September 5-10, 2021,
IEEE, 2021, pp. 527–539. doi:10.1109/CLOUD53861.2021.00069.
URL https://doi.org/10.1109/CLOUD53861.2021.00069

[4] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kus-
mierek, P. Nowak, B. Strack, P. Witusowski, S. Hand, J. Wilkes,
Autopilot: workload autoscaling at google, in: A. Bilas, K. Magoutis,
E. P. Markatos, D. Kostic, M. I. Seltzer (Eds.), EuroSys ’20: Fifteenth
EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020,
ACM, 2020, pp. 16:1–16:16. doi:10.1145/3342195.3387524.
URL https://doi.org/10.1145/3342195.3387524

[5] A. F. Baarzi, G. Kesidis, SHOWAR: right-sizing and efficient schedul-
ing of microservices, in: C. Curino, G. Koutrika, R. Netravali (Eds.),
SoCC ’21: ACM Symposium on Cloud Computing, Seattle, WA,
USA, November 1 - 4, 2021, ACM, 2021, pp. 427–441. doi:10.1145/
3472883.3486999.
URL https://doi.org/10.1145/3472883.3486999

[6] S. Chen, C. Delimitrou, J. F. Martínez, PARTIES: qos-aware resource
partitioning for multiple interactive services, in: I. Bahar, M. Herlihy,
E. Witchel, A. R. Lebeck (Eds.), Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2019, Providence, RI,
USA, April 13-17, 2019, ACM, 2019, pp. 107–120. doi:10.1145/

3297858.3304005.
URL https://doi.org/10.1145/3297858.3304005

[7] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, R. K. Iyer, FIRM:
an intelligent fine-grained resource management framework for slo-
oriented microservices, in: 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2020, Virtual Event,

Ruifeng Ma et al.: Preprint submitted to Elsevier Page 14 of 16

https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1145/2451116.2451125
https://doi.org/10.1145/2451116.2451125
https://doi.org/10.1145/2451116.2451125
https://doi.org/10.1145/2451116.2451125
https://doi.org/10.1109/CLOUD53861.2021.00069
https://doi.org/10.1109/CLOUD53861.2021.00069
https://doi.org/10.1109/CLOUD53861.2021.00069
https://doi.org/10.1109/CLOUD53861.2021.00069
https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1145/3342195.3387524
https://doi.org/10.1145/3472883.3486999
https://doi.org/10.1145/3472883.3486999
https://doi.org/10.1145/3472883.3486999
https://doi.org/10.1145/3472883.3486999
https://doi.org/10.1145/3472883.3486999
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1145/3297858.3304005
https://www.usenix.org/conference/osdi20/presentation/qiu
https://www.usenix.org/conference/osdi20/presentation/qiu
https://www.usenix.org/conference/osdi20/presentation/qiu


Sonnet: A Control-Theoretic Approach for Resource Allocation in Cluster Management

November 4-6, 2020, USENIX Association, 2020, pp. 805–825.
URL https://www.usenix.org/conference/osdi20/presentation/qiu

[8] F. Rossi, M. Nardelli, V. Cardellini, Horizontal and vertical scal-
ing of container-based applications using reinforcement learning, in:
E. Bertino, C. K. Chang, P. Chen, E. Damiani, M. Goul, K. Oyama
(Eds.), 12th IEEE International Conference on Cloud Computing,
CLOUD 2019, Milan, Italy, July 8-13, 2019, IEEE, 2019, pp. 329–
338. doi:10.1109/CLOUD.2019.00061.
URL https://doi.org/10.1109/CLOUD.2019.00061

[9] Z. Hou, S. Jin, Model free adaptive control, CRC press Boca Raton,
FL, 2013.

[10] N. Bashir, N. Deng, K. Rzadca, D. E. Irwin, S. Kodak, R. Jnagal, Take
it to the limit: peak prediction-driven resource overcommitment in
datacenters, in: A. Barbalace, P. Bhatotia, L. Alvisi, C. Cadar (Eds.),
Proc. of ACM EuroSys, pp. 556–573.

[11] G. Yu, P. Chen, Z. Zheng, Microscaler: Automatic scaling for mi-
croservices with an online learning approach, in: E. Bertino, C. K.
Chang, P. Chen, E. Damiani, M. Goul, K. Oyama (Eds.), 2019 IEEE
International Conference on Web Services, ICWS 2019, Milan, Italy,
July 8-13, 2019, IEEE, 2019, pp. 68–75. doi:10.1109/ICWS.2019.

00023.
URL https://doi.org/10.1109/ICWS.2019.00023

[12] K. H. Chow, U. Deshpande, S. Seshadri, L. Liu, Deeprest: deep
resource estimation for interactive microservices, in: Y. Bromberg,
A. Kermarrec, C. Kozyrakis (Eds.), EuroSys ’22: Seventeenth Euro-
pean Conference on Computer Systems, Rennes, France, April 5 - 8,
2022, ACM, 2022, pp. 181–198. doi:10.1145/3492321.3519564.
URL https://doi.org/10.1145/3492321.3519564

[13] A. Mirhosseini, S. Elnikety, T. F. Wenisch, Parslo: A gradient descent-
based approach for near-optimal partial SLO allotment in microser-
vices, in: C. Curino, G. Koutrika, R. Netravali (Eds.), SoCC ’21: ACM
Symposium on Cloud Computing, Seattle, WA, USA, November 1 -
4, 2021, ACM, 2021, pp. 442–457. doi:10.1145/3472883.3486985.
URL https://doi.org/10.1145/3472883.3486985

[14] A. Gandhi, P. Dube, A. A. Karve, A. Kochut, L. Zhang, Adaptive,
model-driven autoscaling for cloud applications, in: X. Zhu,
G. Casale, X. Gu (Eds.), 11th International Conference on Autonomic
Computing, ICAC ’14, Philadelphia, PA, USA, June 18-20, 2014,
USENIX Association, 2014, pp. 57–64.
URL https://www.usenix.org/conference/icac14/

technical-sessions/presentation/gandhi

[15] J. Liu, S. Zhang, Q. Wang, J. Wei, Coordinating fast concurrency
adapting with autoscaling for slo-oriented web applications, IEEE
Trans. Parallel Distributed Syst. 33 (12) (2022) 3349–3362.

[16] Z. Wen, Y. Wang, F. Liu, Stepconf: Slo-aware dynamic resource
configuration for serverless function workflows, in: IEEE INFOCOM
2022 - IEEE Conference on Computer Communications, London,
United Kingdom, May 2-5, 2022, IEEE, 2022, pp. 1868–1877. doi:

10.1109/INFOCOM48880.2022.9796962.
URL https://doi.org/10.1109/INFOCOM48880.2022.9796962

[17] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, C. Kozyrakis,
Heracles: improving resource efficiency at scale, in: D. T. Marr,
D. H. Albonesi (Eds.), Proceedings of the 42nd Annual International
Symposium on Computer Architecture, Portland, OR, USA, June 13-
17, 2015, ACM, 2015, pp. 450–462. doi:10.1145/2749469.2749475.
URL https://doi.org/10.1145/2749469.2749475

[18] A. Horn, H. M. Fard, F. Wolf, Multi-objective hybrid autoscaling of
microservices in kubernetes clusters, in: J. Cano, P. Trinder (Eds.),
Euro-Par 2022: Parallel Processing - 28th International Conference
on Parallel and Distributed Computing, Glasgow, UK, August 22-26,
2022, Proceedings, Vol. 13440 of Lecture Notes in Computer Science,
Springer, 2022, pp. 233–250. doi:10.1007/978-3-031-12597-3\_15.
URL https://doi.org/10.1007/978-3-031-12597-3_15

[19] D. Dechouniotis, N. Leontiou, N. Athanasopoulos, A. Christakidis,
S. Denazis, A control-theoretic approach towards joint admission con-
trol and resource allocation of cloud computing services, International
Journal of Network Management 25 (3) (2015) 159–180.

[20] D. Spatharakis, I. Dimolitsas, E. Vlahakis, D. Dechouniotis,
N. Athanasopoulos, S. Papavassiliou, Distributed resource autoscal-
ing in kubernetes edge clusters, in: 2022 18th International Confer-
ence on Network and Service Management (CNSM), 2022, pp. 163–
169. doi:10.23919/CNSM55787.2022.9965056.

[21] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, C. Delimitrou, Sinan: Ml-based
and qos-aware resource management for cloud microservices, in:
T. Sherwood, E. D. Berger, C. Kozyrakis (Eds.), ASPLOS ’21: 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Virtual Event, USA, April
19-23, 2021, ACM, 2021, pp. 167–181. doi:10.1145/3445814.3446693.
URL https://doi.org/10.1145/3445814.3446693

[22] A. Ullah, J. Li, Y. Shen, A. Hussain, A control theoretical view of
cloud elasticity: taxonomy, survey and challenges, Cluster Computing
21 (2018) 1735–1764.

[23] B. Gregg, Linux bcc/bpf run queue (scheduler) latency, https://

www.brendangregg.com/blog/2016-10-08/linux-bcc-runqlat.html, ac-
cessed July. 9, 2022.

[24] R. J. Meinhold, N. D. Singpurwalla, Understanding the kalman filter,
The American Statistician 37 (2) (1983) 123–127.

[25] memtier_benchmark: A high-throughput benchmarking tool
for redis & memcached, https://redis.com/blog/memtier_

benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/,
accessed July.10, 2022.

[26] ab apache http server benchmarking tool, https://httpd.apache.org/
docs/2.4/programs/ab.html, accessed July.10, 2022.

[27] memcached - a distributed memory object caching system., https:

//memcached.org/, accessed July.13, 2022.
[28] D. Merkel, et al., Docker: lightweight linux containers for consistent

development and deployment, Linux journal 239 (2) (2014).
[29] Z. WANG, C. YANG, Bandwidth control mechanism for docker

container network based on traffic control, Journal of Computer
Applications 39 (12) (2019) 3628–3632.

[30] M. A. Brown, Traic control howto, http://linux-ip.net/articles/

Traffic-Control-HOWTO/, accessed July.11, 2022.
[31] Y. Liao, Q. Jiang, T. Du, W. Jiang, Redefined output model-free adap-

tive control method and unmanned surface vehicle heading control,
IEEE Journal of Oceanic Engineering 45 (3) (2019) 714–723.

[32] S. Liu, Z. Hou, T. Tian, Z. Deng, Z. Li, A novel dual successive
projection-based model-free adaptive control method and application
to an autonomous car, IEEE Transactions on Neural Networks and
Learning Systems 30 (11) (2019) 3444–3457.

[33] S. Liu, Z. Hou, X. Zhang, H. Ji, Model-free adaptive control method
for a class of unknown mimo systems with measurement noise and
application to quadrotor aircraft, IET Control Theory & Applications
14 (15) (2020) 2084–2096.

[34] C. Lu, Y. Zhao, K. Men, L. Tu, Y. Han, Wide-area power system
stabiliser based on model-free adaptive control, IET Control Theory
& Applications 9 (13) (2015) 1996–2007.

[35] P. A. Lynn, The laplace transform and the z-transform, in: Electronic
Signals and Systems, Springer, 1986, pp. 225–272.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duch-
esnay, Scikit-learn: Machine learning in Python, Journal of Machine
Learning Research 12 (2011) 2825–2830.

[37] Redis, https://redis.io/, accessed July.13, 2022.
[38] Nginx: Advanced load balancer, web server, & reverse proxy, https:

//www.nginx.com/, accessed July.13, 2022.
[39] L. Breiman, Random forests, Machine learning 45 (1) (2001) 5–32.
[40] C. C. Hang, K. J. Åström, W. K. Ho, Refinements of the ziegler–

nichols tuning formula, in: IEE Proceedings D: Control Theory and
Applications, Vol. 138, 1991, pp. 111–118.

[41] Google, Extending per second billing in google
cloud, https://cloud.google.com/blog/products/gcp/

extending-per-second-billing-in-google, accessed October. 9,
2023.

Ruifeng Ma et al.: Preprint submitted to Elsevier Page 15 of 16

https://www.usenix.org/conference/osdi20/presentation/qiu
https://doi.org/10.1109/CLOUD.2019.00061
https://doi.org/10.1109/CLOUD.2019.00061
https://doi.org/10.1109/CLOUD.2019.00061
https://doi.org/10.1109/CLOUD.2019.00061
https://doi.org/10.1109/ICWS.2019.00023
https://doi.org/10.1109/ICWS.2019.00023
https://doi.org/10.1109/ICWS.2019.00023
https://doi.org/10.1109/ICWS.2019.00023
https://doi.org/10.1109/ICWS.2019.00023
https://doi.org/10.1145/3492321.3519564
https://doi.org/10.1145/3492321.3519564
https://doi.org/10.1145/3492321.3519564
https://doi.org/10.1145/3492321.3519564
https://doi.org/10.1145/3472883.3486985
https://doi.org/10.1145/3472883.3486985
https://doi.org/10.1145/3472883.3486985
https://doi.org/10.1145/3472883.3486985
https://doi.org/10.1145/3472883.3486985
https://www.usenix.org/conference/icac14/technical-sessions/presentation/gandhi
https://www.usenix.org/conference/icac14/technical-sessions/presentation/gandhi
https://www.usenix.org/conference/icac14/technical-sessions/presentation/gandhi
https://www.usenix.org/conference/icac14/technical-sessions/presentation/gandhi
https://doi.org/10.1109/INFOCOM48880.2022.9796962
https://doi.org/10.1109/INFOCOM48880.2022.9796962
https://doi.org/10.1109/INFOCOM48880.2022.9796962
https://doi.org/10.1109/INFOCOM48880.2022.9796962
https://doi.org/10.1109/INFOCOM48880.2022.9796962
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1145/2749469.2749475
https://doi.org/10.1007/978-3-031-12597-3_15
https://doi.org/10.1007/978-3-031-12597-3_15
https://doi.org/10.1007/978-3-031-12597-3_15
https://doi.org/10.1007/978-3-031-12597-3_15
https://doi.org/10.23919/CNSM55787.2022.9965056
https://doi.org/10.1145/3445814.3446693
https://doi.org/10.1145/3445814.3446693
https://doi.org/10.1145/3445814.3446693
https://doi.org/10.1145/3445814.3446693
https://www.brendangregg.com/blog/2016-10-08/linux-bcc-runqlat.html
https://www.brendangregg.com/blog/2016-10-08/linux-bcc-runqlat.html
https://redis.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redis.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://memcached.org/
https://memcached.org/
http://linux-ip.net/articles/Traffic-Control-HOWTO/
http://linux-ip.net/articles/Traffic-Control-HOWTO/
https://redis.io/
https://www.nginx.com/
https://www.nginx.com/
https://cloud.google.com/blog/products/gcp/extending-per-second-billing-in-google
https://cloud.google.com/blog/products/gcp/extending-per-second-billing-in-google


Sonnet: A Control-Theoretic Approach for Resource Allocation in Cluster Management

[42] T. Damm, L. N. Muhirwa, Zero crossings, overshoot and initial
undershoot in the step and impulse responses of linear systems, IEEE
Transactions on Automatic Control 59 (7) (2014) 1925–1929. doi:

10.1109/TAC.2013.2294616.
[43] AWS, Aws step functions, https://aws.amazon.com/step-functions/,

accessed September. 9, 2023.
[44] Q. Liu, Z. Yu, The elasticity and plasticity in semi-containerized co-

locating cloud workload: a view from alibaba trace, in: Proceedings
of the ACM Symposium on Cloud Computing, 2018, pp. 347–360.

Ruifeng Ma et al.: Preprint submitted to Elsevier Page 16 of 16

https://doi.org/10.1109/TAC.2013.2294616
https://doi.org/10.1109/TAC.2013.2294616
https://aws.amazon.com/step-functions/

